Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Cell Infect Microbiol ; 12: 971933, 2022.
Article in English | MEDLINE | ID: covidwho-2083090

ABSTRACT

During the COVID-19 pandemic, there have been an increasing number of COVID-19 patients with cavitary or cystic lung lesions, re-positive or long-term positive nucleic acid tests, but the mechanism is still unclear. Lung cavities may appear at long time interval from initial onset of coronavirus infection, generally during the absorption phase of the disease. The main histopathological characteristic is diffuse alveolar damage and may have more severe symptoms after initial recovery from COVID-19 and an increased mortality rate. There are many possible etiologies of pulmonary cavities in COVID-19 patients and we hypothesize that occult SARS-CoV-2, in the form of biofilm, is harbored in the airway lacuna with other pathogenic microorganisms, which may be the cause of pulmonary cavities and repeated and long-term positive nucleic acid tests.


Subject(s)
COVID-19 , Nucleic Acids , Tuberculosis, Pleural , Tuberculosis, Pulmonary , Biofilms , Humans , Lung/pathology , Pandemics , SARS-CoV-2 , Tuberculosis, Pulmonary/pathology
2.
Intern Med ; 61(6): 913-916, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1745229

ABSTRACT

A 33-year-old woman with a fever, cough, and pharyngitis was admitted after left-sided pleural effusion was detected. The fever and upper respiratory symptoms were confirmed, and she was diagnosed with coronavirus disease (COVID-19) after showing a positive polymerase chain reaction (PCR) test. After thoracentesis, pleural fluid revealed elevated adenosine deaminase values and a positive QuantiFeron test; tuberculous pleurisy was thus suspected. Subsequent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR and anti-SARS-CoV-2 Spike IgG tests were negative, suggesting that the initial PCR result had been erroneous. However, we were unable to confirm this. Data concerning COVID-19 diagnostics are insufficient at present. It is important to make comprehensive judgments regarding the diagnosis and treatment of patients as well as public health.


Subject(s)
COVID-19 , Pleural Effusion , Tuberculosis, Pleural , Adenosine Deaminase/analysis , Adult , COVID-19/diagnosis , Comorbidity , Female , Humans , Pleural Effusion/diagnosis , SARS-CoV-2 , Tuberculosis, Pleural/diagnosis
3.
Int J Mycobacteriol ; 10(3): 234-242, 2021.
Article in English | MEDLINE | ID: covidwho-1449033

ABSTRACT

Background: This study aimed to describe the spatiotemporal distribution, to build a forecasting model, and to determine the seasonal pattern of tuberculosis (TB) in Algeria. Methods: The Box-Jenkins methodology was used to develop predictive models and GeoDa software was used to perform spatial autocorrelation. Results: Between 1982 and 2019, the notification rate per 100,000 population of smear-positive pulmonary TB (SPPTB) has dropped 62.2%, while that of extrapulmonary TB (EPTB) has risen 91.3%. For the last decade, the mean detection rate of PTB was 82.6%. At around, 2% of PTB cases were yearly reported in children under 15 years old, a peak in notification rate was observed in the elderly aged 65 and over, and the sex ratio was in favor of men. Between 52% and 59% of EPTB cases were lymphadenitis TB and between 15% and 23% were pleural TB. About two-third of EPTB cases were females and around 10% were children under the age of 15. The time series analysis showed that (1,1, 2) × (1, 1, 0)4 (respectively (0, 1, 2) × (1, 1, 0)4, (3, 1, 0) × (1, 1, 0)4) offered the best forecasting model to quarterly TB (respectively EPTB, SPPTB) surveillance data. The most hit part was the Tell followed by high plateaus which accounted for 96.6% of notifications in 2017. Significant hot spots were identified in the central part for EPTB notification rate and in the northwestern part for SPPTB. Conclusions: There is a need to reframe the set objectives in the state strategy to combat TB taking into account seasonality and spatial clustering to ensure improved TB management through targeted and effective interventions.


Subject(s)
Tuberculosis, Pleural , Tuberculosis, Pulmonary , Adolescent , Aged , Algeria/epidemiology , Child , Female , Forecasting , Humans , Male , Spatio-Temporal Analysis , Tuberculosis, Pulmonary/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL